Landwirtschaftlicher Klub der Bundesversammlung

DSP

Braucht die Schweiz neue Pflanzenzüchtungsverfahren? Perspektive eines Pflanzenzüchters

Christian Ochsenbein, Delley Samen und Pflanzen AG 6. März 2024

Aktivitäten DSP

- Wir züchten neue Sorten in Partnerschaft mit Agroscope und mit anderen Partnern
- Wir engagieren uns für die Sortenprüfungen und Registrierungen
- Wir betreiben die **Reinhaltung** für eingeschriebene Sorten
- Wir vermehren die Sorten bis zum Basissaatgut
- Wir vermarkten die Sorten im In- und Ausland über Lizenzverträge
- Wir führen Forschungsprojekte rund ums Saatgut durch
- Wir **gehören** den über 1'000 Schweizer Saatgutproduzenten
- Wir beschäftigen 28 Mitarbeitende
- Unsere Zielmärkte sind konventionell, extenso und Bio, Inland und Ausland
- Wir sind **nicht gewinnorientiert**

Geschäftsbereiche

Getreide 74 Sorten

Leguminosen 24 Sorten (Soja)

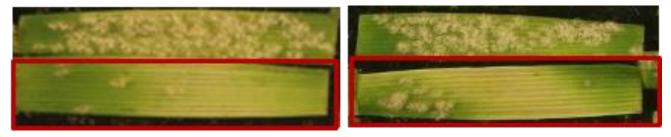
Futterpflanzen 100 Sorten

Mais 56 Hybriden

Gemüse

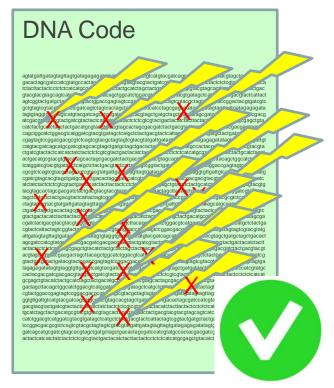
Ausgangslage

- Pflanzenzüchtung wird als eine der Schlüsseltechnologien für eine nachhaltige, klimaneutrale Lebensmittelproduktion betrachtet.
- Druck von biotischen (Pilze, Viren, Bakterien) und abiotische (Trockenheit, Hitze)
 Stressfaktoren nimmt zu.
- Einsatz von Ressourcen, Pflanzenschutzmitteln und Düngemitteln soll reduziert werden.
- Wir brauchen robuste, leistungsfähige und dem standortangepasste Sorten.
- Die Weiterentwicklung der Pflanzenzüchtung ist unerlässlich!


Weiterentwicklung der klassischen Mutationszüchtung

→ Ein natürlicher Mutationsprozess wird angestossen

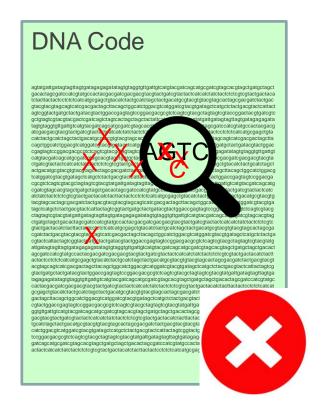
Projekt gestoppt aufgrund der Beurteilung als «Gentechnologie»


TEgenesis

Erste Resultate: Resistenz gegen Echten Mehltau in Weizen

Weizensorte: Arina / E. Bucher, H. Peng (Agroscope), J. Martin, V. Widrig (UZH)

Klassische Mutagenese



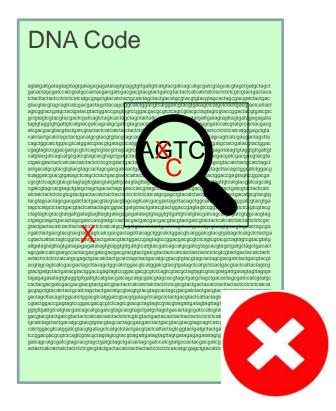
Bestrahlung oder Chemie Welche DNA-Schäden erzeugt

zufällig

Mutationen nicht nachvollziehbar

Neue Mutagenese

z.B. TE-Genesis


Pflanzeneigener Prozess zur Mutagenese wird angestossen

zufällig

kann nachverfolgt werden

CRISPR/Cas

Mutationen werden gezielt erzeugt

nicht zufällig

kann nachverfolgt werden

Anwendungsmöglichkeiten von NZV

Wir sehen aktuell v.a. zwei Bereiche:

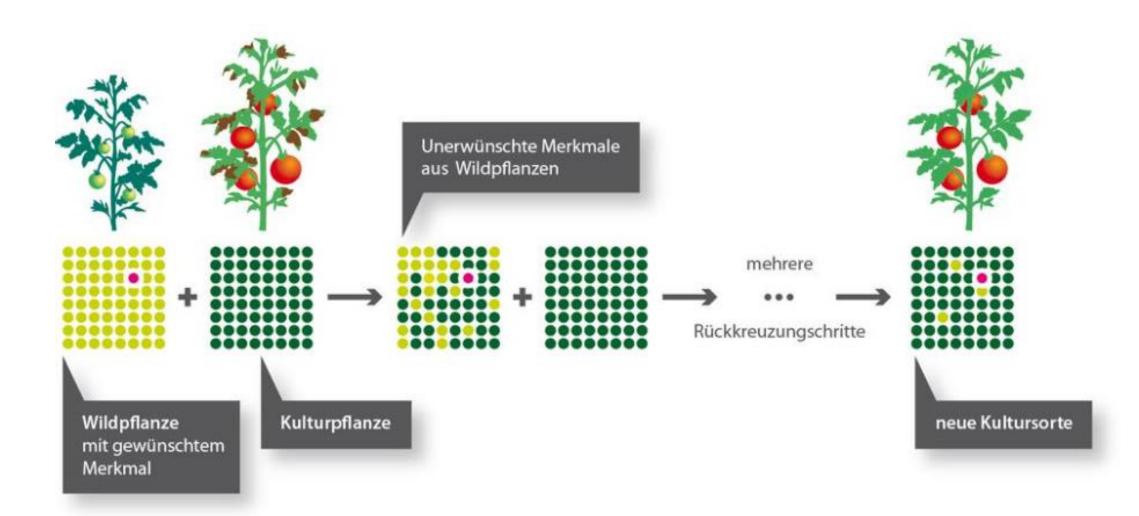
Ausschalten von Gene

- → Bessere Krankheitsresistenz
- → Anpassung von Inhaltsstoffen (Stoffwechselsynthese)

Alternative: klassischer Mutationszüchtung

Ist kaum machbar in Pflanzen mit mehrfachem Genom (z.B. Weizen, Kartoffeln)

Übertragen von Resistenzgene aus wilden Verwandten in Zuchtsorten


→ Bessere Krankheitsresistenz

Alternative: klassische Kreuzungszüchtung

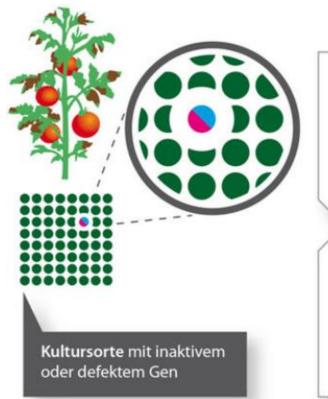
Dauert häufig sehr lange (> 20 Jahre).

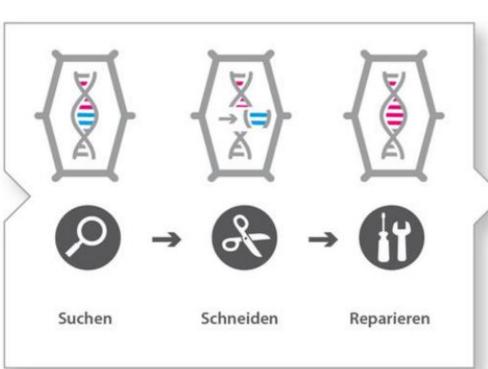
Klassische Rückkreuzung

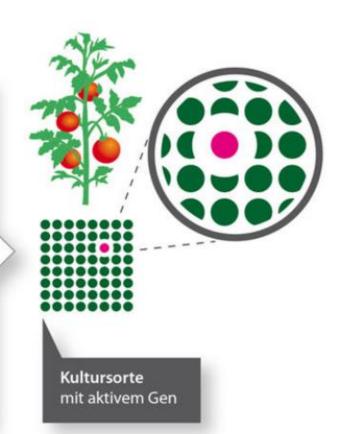
Einkreuzung von Resistenz mit klassischer Züchtung

Haverkort et al. Potato Research (2009) 52:249-264 258 cv. Bionica ~ 2005 cv. Toluca etc. 1980 ABPT (4x + 6x)S. tuberosum ABP (4x) S. tuberosum ABP(6x)S. phureja (2x) 1965 AB(3x + 4x)Brückenkreuzungen S. acaule (4x) S. bulbocastanum (2x) 1959

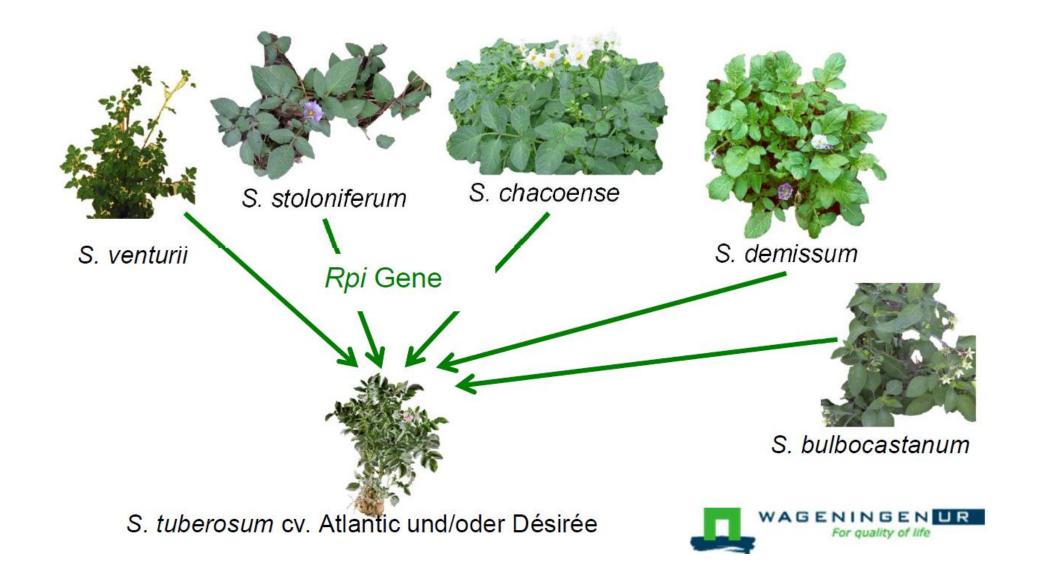
Einkreuzen von Resistenzen aus Wildkartoffel S. bulbocastanum


46 Jahre bis zu den neuen Sorten





Genom Editierung



Resistenzgene gegen Krautfäule aus Wildkartoffeln

Breite Pilztoleranz bei Weizen mit Crispr/CAS

- Projekt PILTON vom Bund der deutschen Pflanzenzüchter
- Breite Toleranz gegen vier Krankheiten
- Einsatz von Pflanzenschutzmittel einsparen
- Sechs Kopien (Allele) eine Gens gleichzeitig ausschalten
- Direkt in deutsche Zuchtsorte
- -> Eignung für die CH?
- Unsere Möglichkeiten:
 - Nachbauen (lassen) in CH-Zuchtsorte
 - Einkreuzung in CH Zuchtsorte -> Neue resistente Sorte in 10-15 Jahren

Gesunde Ähre

Fusarium

Braunrost

eptoria

Schlussfolgerungen

- Die NZV können Züchtung präziser und schneller machen.
- Klassische Kreuzungs-Züchtung bleibt wichtig.
- Mit der letztmaligen Verlängerung hat der Bundesrat die Praxis verschärft.
- Die Züchtung mit NZV ist heute in der Schweiz nicht möglich.
- Wir können ihr Potenzial nicht ergründen.
- Die heutige Regelung ist innovationsfeindlich und sachlich falsch.
- Sie hemmt den Fortschritt zu Gunsten einer nachhaltigen Landwirtschaft.
- Sie benachteiligt insbesondere die kleineren, hier ansässigen Züchter.
- → Die NZV bieten neue Möglichkeiten
- → Sie haben eine echte Chance verdient!
- → Zumindest für Anwendungen, wo keine artfremde DNA eingefügt wird (resp. für Anwendung, welche grundsätzlich auch mit biologischen Verfahren)

Was ist uns wichtig im GTG

- Kategorisierung darf nicht strenger sein als EU (kein Swiss-Finish!)
 - Wir sind auf einen einfachen Austausch von Genmaterial (Pflanzen) mit dem Ausland angewiesen
 - Wir machen jedes Jahr ca. 100 Kreuzungen mit Weizenpflanzen vom Ausland
 - Mit zusätzlichen administrativen Hürden wird der Austausch stark zurück gehen
 - Negative Effekte auf Konkurrenzfähigkeit der CH-Züchter und auf Biodiversität in CH
- Keine «Scheinliberalisierung» (Verhinderung mit strenger Regulierung)
- Administrative Hürden treffen v. a. kleinere und mittlere CH-Züchter
- Mögliche Lösung:
 - Prüfung Mehrwert und Deklaration bei Sortenregistrierung (je nach Produkt zusätzliche Prüfung)
 - Deklaration auf Saatgut
 - Wahlfreiheit für Landwirte und Konsumenten über Labels
 - Koexistenz gut machbar im handelsüblichen Toleranzbereich

Was ist uns wichtig im Patentrecht?

Verfügbarkeit des Genpools trotz Patente

 Wurde mit der jüngeren Entwicklung im EU-Patentübereinkommen erfüllt (Züchterprivileg auch für Sorten mit patentierten Merkmalen)

Hohe Hürden für die Erteilung von Patente auf Pflanzen/Merkmale

- Die Latte wurde in den letzten Jahren stark erhöht
- Merkmale, welche natürlicherweise vorkommen, können nicht mehr patentiert werden
- Wie die Praxis genau aussehen wird, bleibt zu beobachten

Einfache Transparenz zu Patenten und faire Lizenzbedingungen

 Wird aktuell in der CH mit Motion «Mehr Transparenz bei den Patentrechten im Bereich Pflanzenzucht» angegangen

Wie kann der Regulator eine diversen Züchterlandschaft fördern?

- Nicht, indem er hohe administrative Hürden für neue Züchtungstechnologien aufbaut oder gar verbietet
- Indem er selber investiert in die **Entwicklung** von neuen Verfahren
- Indem er investiert in das Pre-Breeding
- Indem er sich für einen starken, international abgestimmten Sortenschutz einsetzt
- etc

