
Schweizerische Eidgenossenschaft

Landwirtschaftlicher Klub der Bundesversammlung

CRISPR & Co – Was bieten die Neuen Züchtungstechnologien der Schweizer Landwirtschaft

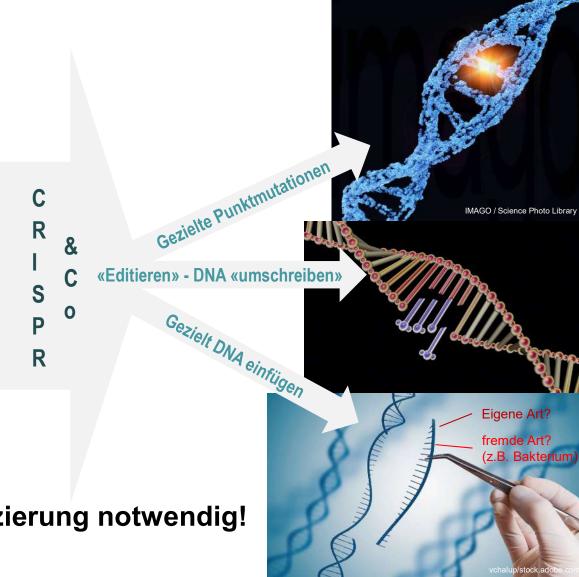
22. September 2021Roland Peter, Agroscope

U Herausforderungen der Landwirtschaft

Mutationszüchtung: DER bisherige Standard für die Erzeugung neuer Eigenschaften

- Einsatz von Strahlen oder Chemikalien seit >70 Jahren!
- FAO/IAEA Programm zur Anwendung der klassischen Mutagenesetechniken
- Mehr als 3300 Sorten in der FAO/IAEA
 Datenbank (https://mvd.iaea.org/#!Home)
 - Z.B. wichtigste Weizensorten für Pasta




Weiterentwicklung dieser «traditionellen»

Methoden durch BR-Vorschlag GTG ab 2022 nicht möglich

→ Nachweis einer langjährigen, sicheren Anwendung fehlt

CONTROLL **Alte** Gentechnik vs. Genome Editing (CRISPR & Co)

Rechtliche Differenzierung notwendig!

Welche neuen Eigenschaften sind möglich?

(international in Bearbeitung)

pilzkrankheiten, epilzkrankheiten (Schädlinge)

Öl, Protein, Allergene,... Trockenstress, Hitzestress, Kühlestress,... Ertrag, Herbizidresistektur, Domestikation,...

Genome Editing (CRISPR & Co)

Beispiele von neuen Eigenschaften in der «Pipeline» Plant Beneficial trait Genome-editting Research study

Bessere Nahrungs- und Futtermittel-Qualität

Ertragsverluste, weniger Pestizid- und Wasserverbrauch

Ertrag / Agronomische Merkmale

Plant	Beneficial trait	Genome-editing technique	Research study
	Traits related to i	mproved food/feed qu	ality
Alfalfa	Reduced lignin content	TALEN	APHIS* database ⁴⁷
Canola	Improved fatty acid composition	CRISPR-Cas	Okuzaki et al., 2018 ⁸²
Peanut	Improved fatty acid content	TALEN	Wen et al., 2018 ⁸³
Rice	Increased amylose content	CRISPR-Cas	Sun et al., 2017 ⁸⁴
Tomato	Increased lycopene content	CRISPR-Cas	Li et al., 2018 ⁸⁵
Wheat	Increased fibre content	TALEN	APHIS* database ⁴⁷
Wheat	Reduced gluten content	CRISPR-Cas	Sánchez-León et al., 201786
Soybean	Improved oil quality	TALEN	Haun et al., 2014 ⁸⁷ Demorest et al., 2016 ⁸⁸
			APHIS* database ⁴⁷
Sage	Reduced phenolic acid content	CRISPR-Cas	Zhou et al., 2018 ⁸⁹
Maize	Improved starch production	CRISPR-Cas	APHIS* database ⁴⁷
Lettuce	Increased vitamin C content	CRISPR-Cas	Zhang et al., 201890
	Traits related to reduced crop lo	sses, pesticide use or	water consumption
Cacao	Resistance to Phytophthora tropicalis	CRISPR-Cas	Fister et al., 2018 ⁹¹
Cucumber	Broad resistance to viruses	CRISPR-Cas	Chandrasekaran et al., 2016 ⁹²
Grapefruit	Resistance to citrus canker	CRISPR-Cas	Jia et al., 2015 ⁹⁰ Jia et al., 2017 ⁹⁴
Orange	Resistance to citrus canker	CRISPR-Cas	Peng et al., 2017%
Grapevine	Resistance to Botrytis cinerea	CRISPR-Cas	Wang et al., 2018%
Tomato	Broad resistance to bacterial infections	CRISPR-Cas	de Toledo Thomazella et al., 201697
Wheat	Resistance to powdery mildew	TALEN/CRISPR-Cas	Wang et al., 2014 ⁷⁹ Zhang et al., 2017 ⁹⁸
			APHIS* database47
Soybean	Drought and salt tolerance	CRISPR-Cas	APHIS* database47
Maize	Drought tolerance	CRISPR-Cas	Njuguna et al., 2017 ⁹⁹
Potato	Resistance to Potato Virus Y (PVY)	CRISPR-Cas	Zhan et al., 2019100
	Traits related t	o agronomic importanc	ce
Rice	Increased seed weight	CRISPR-Cas	Li et al., 2016 ¹⁰¹
Canola	Increased shatter resistance and seeds number per husk	CRISPR-Cas	Braatz et al., 2017 ¹⁰² Yang et al., 2018 ¹⁰³
Lettuce	Germination at high temperature	CRISPR-Cas	Bertier et al., 2018 ¹⁰⁴
Wheat	Increased grain weight	CRISPR-Cas	Wang et al., 2018105
Potato	Improved cold storage and processing traits	TALEN	Clasen et al., 2015 ⁸⁰
Tomato	Increased fruit size	CRISPR-Cas	Rodríguez-Leal et al., 2017106

Für die Schweiz? Krautfäuleresistenzen aus Wildkartoffeln

Protected Site (2016-19): 1-3 Resistenzen aus Wildkartoffel in je 2 Sorten (Atlantic, Desiree). Dieser «Cisgenese»-Ansatz wurde noch mit «alter» Gentechnologie durchgeführt.

- → Üblicherweise 7-8 Pflanzenschutz-Behandlungen gegen Kraut- und Knollenfäule.
- → Cisgene Linien zeigten keinerlei Krankheitssymptome ohne Behandlung
- → Massive Reduktion von Ertragsverlusten und Pflanzenschutzmitteleinsatz im Kartoffelanbau möglich!

Agroscope

Für die Schweiz? Weizen mit multipler Pilztoleranz

PILTON-Projekt (DE):
 Pilztoleranz von Weizen mittels neuer
 Züchtungsmethoden

- Breite Toleranz gegen 4 Krankheiten durch CRISPR/Cas (Braunrost, Gelbrost, Septoria und Fusarium)
- Einsparung von Pflanzenschutzmitteln ermöglichen
- Erste Feldprüfungen ab 2022 geplant

Seni

Fazit & Ausblick

Genome Editing (CRISPR & Co) hat das Potenzial einschneidende Zielkonflikte in der Landwirtschaft aufzulösen.

→ z.B. minimaler Pflanzenschutz vs. Erhaltung der Produktivität.

Standpunkt der Wissenschaft:

- Genome Editing (CRISPR & Co) ist viel präziser als «alte» Gentechnik
 → Differenzierung der Methoden für die Zulassung zwingend!
- Noch stärkere Einschränkung von Forschung und Innovation mit dem neuen Moratorium, resp. GTG ab 2022:
 Weiterentwicklungen traditioneller Mutagenesemethoden fallen neu auch unter das GTG!
- Zeit des Moratoriums nutzen!
 - → Auftrag für die Differenzierung von «alter» Gentechnologie vs. Genome Editing.
 - → Bewertung des Produktes statt der verwendeten Methode ermöglichen (vgl. Empfehlung NFP 59)

roland.peter@agroscope.admin.ch

Agroscope gutes Essen, gesunde Umwelt www.agroscope.admin.ch

Agroscope